COMMISSION IMPLEMENTING DECISION

of 9 October 2014

establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, for the refining of mineral oil and gas

(notified under document C(2014) 7155)

(Text with EEA relevance)

(2014/738/EU)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (¹), and in particular Article 13(5) thereof,

Whereas:

- (1) Article 13(1) of Directive 2010/75/EU requires the Commission to organise an exchange of information on industrial emissions between it and Member States, the industries concerned and non-governmental organisations promoting environmental protection in order to facilitate the drawing up of best available techniques (BAT) reference documents as defined in Article 3(11) of that Directive.
- (2) In accordance with Article 13(2) of Directive 2010/75/EU, the exchange of information is to address the performance of installations and techniques in terms of emissions, expressed as short- and long-term averages, where appropriate, and the associated reference conditions, consumption and nature of raw materials, water consumption, use of energy and generation of waste and the techniques used, associated monitoring, cross-media effects, economic and technical viability and developments therein and best available techniques and emerging techniques identified after considering the issues mentioned in points (a) and (b) of Article 13(2) of that Directive.
- (3) 'BAT conclusions' as defined in Article 3(12) of Directive 2010/75/EU are the key element of BAT reference documents and lay down the conclusions on best available techniques, their description, information to assess their applicability, the emission levels associated with the best available techniques, associated monitoring, associated consumption levels and, where appropriate, relevant site remediation measures.
- (4) In accordance with Article 14(3) of Directive 2010/75/EU, BAT conclusions are to be the reference for setting permit conditions for installations covered by Chapter II of that Directive.
- (5) Article 15(3) of Directive 2010/75/EU requires the competent authority to set emission limit values that ensure that, under normal operating conditions, emissions do not exceed the emission levels associated with the best available techniques as laid down in the decisions on BAT conclusions referred to in Article 13(5) of Directive 2010/75/EU.
- (6) Article 15(4) of Directive 2010/75/EU provides for derogations from the requirement laid down in Article 15(3) only where the costs associated with the achievement of the emission levels associated with the BAT disproportionately outweigh the environmental benefits due to the geographical location, the local environmental conditions or the technical characteristics of the installation concerned.

- (7) Article 16(1) of Directive 2010/75/EU provides that the monitoring requirements in the permit referred to in point (c) of Article 14(1) of the Directive are to be based on the conclusions on monitoring as described in the BAT conclusions.
- (8) In accordance with Article 21(3) of Directive 2010/75/EU, within 4 years of publication of decisions on BAT conclusions, the competent authority is to reconsider and, if necessary, update all the permit conditions and ensure that the installation complies with those permit conditions.
- (9) The Commission established a forum composed of representatives of Member States, the industries concerned and non-governmental organisations promoting environmental protection by Decision of 16 May 2011 establishing a forum for the exchange of information pursuant to Article 13 of Directive 2010/75/EU on industrial emissions (²).
- (10)In accordance with Article 13(4) of Directive 2010/75/EU, the Commission obtained the opinion of the forum, established by Decision of 16 May 2011, on the proposed content of the BAT reference document for the refining of mineral oil and gas on 20 September 2013 and made it publicly available.
- (11) The measures provided for in this Decision are in accordance with the opinion of the Committee established by Article 75(1) of Directive 2010/75/EU,

HAS ADOPTED THIS DECISION:

Article 1

The BAT conclusions for the refining of mineral oil and gas, as set out in the Annex, are adopted.

Article 2

This Decision is addressed to the Member States.

Done at Brussels, 9 October 2014.

For the Commission Janez POTOČNIK Member of the Commission

(¹) OJ L 334, 17.12.2010, p. 17.

(²) OJ C 146, 17.5.2011, p. 3.

ANNEX

BAT CONCLUSIONS FOR THE REFINING OF MINERAL OIL AND GAS

SCOPE	41
GENERAL CONSIDERATIONS	43
Averaging periods and reference conditions for emissions to air	43
Conversion of emissions concentration to reference oxygen level	44
Averaging periods and reference conditions for emissions to water	44
DEFINITIONS	44
1.1. General BAT conclusions for the refining of mineral oil and gas	46
1.1.1. Environmental management systems	46
1.1.2. Energy efficiency	47
1.1.3. Solid materials storage and handling	48

1.1.4. Monitoring of emissions to air and key process parameters	48
1.1.5. Operation of waste gas treatment systems	49
1.1.6. Monitoring of emissions to water	50
1.1.7. Emissions to water	50
1.1.8. Waste generation and management	52
1.1.9. Noise	53
1.1.10. BAT conclusions for integrated refinery management	53
1.2. BAT conclusions for the alkylation process	54
1.2.1. Hydrofluoric acid alkylation process	54
1.2.2. Sulphuric acid alkylation process	54
1.3. BAT conclusions for base oil production processes	54
1.4. BAT conclusions for the bitumen production process	55
1.5. BAT conclusions for the fluid catalytic cracking process	55
1.6. BAT conclusions for the catalytic reforming process	59
1.7. BAT conclusions for the coking processes	60
1.8. BAT conclusions for the desalting process	62
1.9. BAT conclusions for the combustion units	62
1.10. BAT conclusions for the etherification process	68
1.11. BAT conclusions for the isomerisation process	69
1.12. BAT conclusions for the natural gas refinery	69
1.13. BAT conclusions for the distillation process	69
1.14. BAT conclusions for the products treatment process	69
1.15. BAT conclusions for storage and handling processes	70
1.16. BAT conclusions for visbreaking and other thermal processes	71
1.17. BAT conclusions for waste gas sulphur treatment	72
1.18. BAT conclusions for flares	72
1.19. BAT conclusions for integrated emission management	73
GLOSSARY	75
1.20. Description of techniques for the prevention and control of emissions to air	75
1.20.1. Dust	75
1.20.2. Nitrogen oxides (NO_X)	76
1.20.3. Sulphur oxides (SO_X)	77
1.20.4. Combined techniques (SO _x , NO _x and dust)	79
1.20.5. Carbon monoxide (CO)	79
1.20.6. Volatile organic compounds (VOC)	79
1.20.7. Other techniques	81
1.21. Description of techniques for the prevention and control of emissions to water	82
1.21.1. Waste water pretreatment	82
1.21.2. Waste water treatment	82

SCOPE

These BAT conclusions cover certain industrial activities specified in Section 1.2 of Annex I to Directive 2010/75/EU, namely '1.2. Refining of mineral oil and gas'.

In particular, these BAT conclusions cover the following processes and activities:

Activity	Subactivities or processes included in activity
Alkylation	All alkylation processes: hydrofluoric acid (HF), sulphuric acid (H ₂ SO ₄) and solid-acid
Base oil production	Deasphalting, aromatic extraction, wax processing and lubricant oil hydrofinishing
Bitumen production	All techniques from storage to final product additives
Catalytic cracking	All types of catalytic cracking units such as fluid catalytic cracking
Catalytic reforming	Continuous, cyclic and semi- regenerative catalytic reforming
Coking	Delayed and fluid coking processes. Coke calcination
Cooling	Cooling techniques applied in refineries

Desalting	Desalting of crude oil
Combustion units for energy production	Combustion units burning refinery fuels, excluding units using only conventional or commercial fuels
Etherification	Production of chemicals (e.g. alcohols and ethers such as MTBE, ETBE and TAME) used as motor fuels additives
Gas separation	Separation of light fractions of the crude oil e.g. refinery fuel gas (RFG), liquefied petroleum gas (LPG)
Hydrogen consuming processes	Hydrocracking, hydrorefining, hydrotreatments, hydroconversion, hydroprocessing and hydrogenation processes
Hydrogen production	Partial oxidation, steam reforming, gas heated reforming and hydrogen purification
Isomerisation	Isomerisation of hydrocarbon compounds C_4 , C_5 and C_6
Natural gas plants	Natural gas (NG) processing including

	liquefaction of NG
Polymerisation	Polymerisation, dimerisation and condensation
Primary distillation	Atmospheric and vacuum distillation
Product treatments	Sweetening and final product treatments
Storage and handling of refinery materials	Storage, blending, loading and unloading of refinery materials
Visbreaking and other thermal conversions	Thermal treatments such as visbreaking or thermal gas oil process
Waste gas treatment	Techniques to reduce or abate emissions to air
Waste water treatment	Techniques to treat waste water prior to release
Waste management	Techniques to prevent or reduce the generation of waste

These BAT conclusions do not address the following activities or processes:

- the exploration and production of crude oil and natural gas;
- the transportation of crude oil and natural gas;
- the marketing and distribution of products.

Other reference documents which may be relevant for the activities covered by these BAT conclusions are the following:

Reference document	Subject
Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector (CWW)	Waste water management and treatment techniques
Industrial Cooling Systems (ICS)	Cooling processes
Economics and Cross-media Effects (ECM)	Economics and cross- media effects of techniques
Emissions from Storage (EFS)	Storage, blending, loading and unloading of refinery materials
Energy Efficiency (ENE)	Energy efficiency and integrated refinery management
Large Combustion Plants (LCP)	Combustion of conventional and commercial fuels
Large Volume Inorganic Chemicals — Ammonia, Acids and Fertilisers Industries (LVIC-AAF)	Steam reforming and hydrogen purification
Large Volume Organic Chemical Industry (LVOC)	Etherification process (MTBE, ETBE and TAME production)
Waste Incineration (WI)	Waste incineration

Waste Treatment (WT)	Waste treatment
General Principles of Monitoring (MON)	Monitoring of emissions to air and water

GENERAL CONSIDERATIONS

The techniques listed and described in these BAT conclusions are neither prescriptive nor exhaustive. Other techniques may be used that ensure at least an equivalent level of environmental protection.

Unless otherwise stated, these BAT conclusions are generally applicable.

Averaging periods and reference conditions for emissions to air

Unless stated otherwise, emission levels associated with the best available techniques (BAT-AELs) for emissions to air given in these BAT conclusions refer to concentrations, expressed as mass of emitted substance per volume of waste gas under the following standard conditions: dry gas, temperature of 273,15 K, pressure of 101,3 kPa.

	BAT- AELs refer to monthly average values, which are the averages of all valid hourly average values measured over a period of one month
For periodic measurements	BAT- AELs refer to the average value of three spot samples of at least 30 minutes each

For combustion units, catalytic cracking processes, and waste gas sulphur recovery units, reference conditions for oxygen are shown in Table 1.

Table 1

Reference conditions	for	BAT-AEL	s concerning	emissions	to sir
Reference conditions	101	DAI-ALL	s concerning	CHIISSIUIIS	to all

Activities	Unit	Oxygen reference conditions
Combustion unit using liquid or gaseous fuels with the exception of gas turbines and engines	mg/Nm ³	3 % oxygen by volume
Combustion unit using solid fuels	mg/Nm ³	6 % oxygen by volume
Gas turbines (including combined cycle gas turbines — CCGT) and engines	mg/Nm ³	15 % oxygen by volume
Catalytic cracking process (regenerator)	mg/Nm ³	3 % oxygen by volume
Waste gas sulphur recovery unit (¹)	mg/Nm ³	3 % oxygen by volume

Conversion of emissions concentration to reference oxygen level

The formula for calculating the emissions concentration at a reference oxygen level (see Table 1) is shown below.

Formula

Where:

$E_R (mg/Nm^3)$:	emissions concentration referred to the reference oxygen level O_{R}
O _R (vol %)	:	reference oxygen level
$E_{\rm M} ({\rm mg}/{\rm Nm}^3)$:	emissions concentration referred to the measured oxygen level O_M
O _M (vol %)	:	measured oxygen level.

Averaging periods and reference conditions for emissions to water

Unless stated otherwise, emission levels associated with the best available techniques (BAT-AELs) for emissions to water given in these BAT conclusions refer to values of concentration (mass of emitted substances per volume of water) expressed in mg/l.

Unless stated otherwise, the averaging periods associated with the BAT-AELs are defined as follows:

Daily average	Average over
	a sampling
	period of 24
	hours taken
	as a flow-
	proportional
	composite
	sample or,
	provided that

	sufficient flow stability is demonstrated, from a time- proportional sample
Yearly/Monthly average	Average of all daily averages obtained within a year/month, weighted according to the daily flows

DEFINITIONS

For the purpose of these BAT conclusions, the following definitions apply:

Term used	Definition
Unit	A segment/subpart of the installation in which a specific processing operation is conducted
New unit	A unit first permitted on the site of the installation following the publication of these BAT conclusions or a complete replacement of a unit on the existing foundations of the installation following the publication of these BAT conclusions

Existing unit	A unit which is not a new unit
Process off-gas	The collected gas generated by a process which must be treated e.g. in an acid gas removal unit and a sulphur recovery unit (SRU)
Flue-gas	The exhaust gas exiting a unit after an oxidation step, generally combustion (e.g. regenerator, Claus unit)
Tail gas	Common name of the exhaust gas from an SRU (generally Claus process)
VOC	Volatile organic compounds as defined in Article 3(45) of Directive 2010/75/EU
NMVOC	VOC excluding methane
Diffuse VOC emissions	Non-channelled VOC emissions that are not released via specific emission points such as stacks. They can result from 'area' sources (e.g. tanks) or 'point'

	sources (e.g. pipe flanges)
NO _X expressed as NO ₂	The sum of nitrogen oxide (NO) and nitrogen dioxide (NO ₂) expressed as NO_2
SO _X expressed as SO ₂	The sum of sulphur dioxide (SO_2) and sulphur trioxide (SO_3) expressed as SO_2
H ₂ S	Hydrogen sulphide. Carbonyl sulphide and mercaptan are not included
Hydrogen chloride expressed as HCl	All gaseous chlorides expressed as HCl
Hydrogen fluoride expressed as HF	All gaseous fluorides expressed as HF
FCC unit	Fluid catalytic cracking: a conversion process for upgrading heavy hydrocarbons, using heat and a catalyst to break larger hydrocarbon molecules into lighter molecules
SRU	Sulphur recovery unit. See definition

	in Section 1.20.3
Refinery fuel	Solid, liquid or gaseous combustible material from the distillation and conversion steps of the refining of crude oil. Examples are refinery fuel gas (RFG), syngas and refinery oils, pet coke
RFG	Refinery fuel gas: off-gases from distillation or conversion units used as a fuel
Combustion unit	Unit burning refinery fuels alone or with other fuels for the production of energy at the refinery site, such as boilers (except CO boilers), furnaces, and gas turbines.
Continuous measurement	Measurement using an 'automated measuring system' (AMS) or a 'continuous emission monitoring system' (CEMS) permanently installed on site
Periodic measurement	Determination of a measurand

	at specified time intervals using manual or automated reference methods
Indirect monitoring of emissions to air	Estimation of
	the emissions
	concentration in
	the flue-gas of a
	pollutant
	obtained
	through an
	appropriate
	combination of
	measurements
	of surrogate
	parameters
	(such as
	O_2 content,
	sulphur or
	nitrogen content
	in the
	feed/fuel),
	calculations and
	periodic stack
	measurements.
	The use of
	emission ratios
	based on S
	content in the
	fuel is one
	example of
	indirect
	monitoring.
	Another
	example of
	indirect
	monitoring is
	the use of
	PEMS
Predictive Emissions monitoring system (PEMS)	System to
reactive Emissions monitoring system (i Ewis)	determine the
	emissions
	concentration of
	a pollutant based on its
	relationship with a number
	of characteristic
	continuously

	monitored
	process
	parameters (e.g.
	fuel-gas
	consumption,
	air/fuel ratio)
	and fuel or feed
	quality data
	(e.g. the sulphur
	content) of an
	emission source
Volatile liquid hydrocarbon compounds	Petroleum
	derivatives with
	a Reid vapour
	pressure (RVP)
	of more than 4
	kPa, such as
	naphtha and
	aromatics
Recovery rate	Percentage of
	NMVOC
	recovered from
	the streams
	conveyed into a
	vapour recovery
	unit (VRU)

1.1. General BAT conclusions for the refining of mineral oil and gas

The process-specific BAT conclusions included in Sections 1.2 to 1.19 apply in addition to the general BAT conclusions mentioned in this section.

1.1.1. Environmental management systems

BATIn order to improve the overall environmental performance of plants for the refining of mineral oil

- 1. and gas, BAT is to implement and adhere to an environmental management system (EMS) that incorporates all of the following features:
 - (i) commitment of the management, including senior management;
 - (ii) definition of an environmental policy that includes the continuous improvement for the installation by the management;
 - (iii) planning and establishing the necessary procedures, objectives and targets, in conjunction with financial planning and investment;
 - (iv) implementation of the procedures paying particular attention to:
 - (a) structure and responsibility
 - (b) training, awareness and competence
 - (c) communication
 - (d) employee involvement

- (e) documentation
- (f) efficient process control
- (g) maintenance programmes
- (h) emergency preparedness and response
- (i) safeguarding compliance with environmental legislation.
- (v) checking performance and taking corrective action, paying particular attention to:
 - (a) monitoring and measurement (see also the reference document on the General Principles of Monitoring)
 - (b) corrective and preventive action
 - (c) maintenance of records
 - (d) independent (where practicable) internal and external auditing in order to determine whether or not the EMS conforms to planned arrangements and has been properly implemented and maintained;
- (vi) review of the EMS and its continuing suitability, adequacy and effectiveness by senior management;
- (vii)following the development of cleaner technologies;
- (viii)consideration for the environmental impacts from the eventual decommissioning of the installation at the stage of designing a new plant, and throughout its operating life;

(ix) application of sectoral benchmarking on a regular basis.

Applicability

The scope (e.g. level of detail) and nature of the EMS (e.g. standardised or non-standardised) will generally be related to the nature, scale and complexity of the installation, and the range of environmental impacts it may have.

1.1.2. Energy efficiency

BATIn order to use energy efficiently, BAT is to use an appropriate combination of the techniques given

2. below.

Technique	Description
(i) Design techniques	
a. Pinch analysis	Methodology based on a systematic calculation of thermodynamic targets for minimising energy consumption of processes. Used as a tool for the

	evaluation of total systems designs
b. Heat integration	Heat integration of process systems ensures that a substantial proportion of the heat required in various processes is provided by exchanging heat between streams to be heated and streams to be cooled
c. Heat and power recovery	Use of energy recovery devices e.g.: waste heat boilers expanders/power recovery in the FCC unit use of waste heat in district heating
(ii) Process control and maintenance techniques	
a. Process optimisation	Automated controlled combustion in order to lower the fuel consumption per tonne of feed processed, often combined with heat integration for improving furnace efficiency
b. Management and reduction of steam consumption	Systematic mapping of drain valve systems in order to reduce steam consumption and optimise its use

c. Use of energy benchmark	Participation in ranking and benchmarking activities in order to achieve continuous improvement by learning from best practice
(iii)	
Energy-efficient production techniques	
a. Use of combined heat and power	System designed for the co-production (or the cogeneration) of heat (e.g. steam) and electric power from the same fuel
b. Integrated gasification combined cycle (IGCC)	Technique whose purpose is to produce steam, hydrogen (optional) and electric power from a variety of fuel types (e.g. heavy fuel oil or coke) with a high conversion efficiency

1.1.3. Solid materials storage and handling

BATIn order to prevent or, where that is not practicable, to reduce dust emissions from the storage and

- 3. handling of dusty materials, BAT is to use one or a combination of the techniques given below:
 - (i) store bulk powder materials in enclosed silos equipped with a dust abatement system (e.g. fabric filter);
 - (ii) store fine materials in enclosed containers or sealed bags;
 - (iii) keep stockpiles of coarse dusty material wetted, stabilise the surface with crusting agents, or store under cover in stockpiles;
 - (iv) use road cleaning vehicles.

1.1.4. Monitoring of emissions to air and key process parameters

BATBAT is to monitor emissions to air by using the monitoring techniques with at least the minimum

4. frequency given below and in accordance with EN standards. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.

Description	Unit	Minimum	Monitoring
		frequency	technique

(i)SO _X , NO _X , and dust emissions	Catalytic cracking	Continuous (²) (³)	Direct measurement
	Combustion units ≥ 100 MW (⁴) and calcining units	Continuous (²) (³)	Direct measurement (⁵)
	Combustion units of 50 to 100 MW (⁴)	Continuous (²) (³)	Direct measurement or indirect monitoring
	Combustion units < 50 MW (⁴)	Once a year and after significant fuel changes (⁶)	Direct measurement or indirect monitoring
	Sulphur recovery units (SRU)	Continuous for SO ₂ only	Direct measurement or indirect monitoring (⁷)
(ii)NH ₃ emissions	All units equipped with SCR or SNCR	Continuous	Direct measurement
(iii)CO emissions	Catalytic cracking and combustion units ≥ 100 MW (⁴)	Continuous	Direct measurement
	Other combustion units	Once every 6 months (⁶)	Direct measurement
(iv)Metals emissions: Nickel (Ni), Antimony (Sb) (⁸), Vanadium (V)	Catalytic cracking	months and after	Direct measurement or analysis based on metals
	Combustion units (⁹)	significant changes to the unit (⁶)	content in the catalyst fines and in the fuel

(v)Polychlorinated (PCDD/F) emissions	dibenzodioxins/furans	Catalytic reformer	Once a year or once a regeneration, whichever is longer	Direct measurement
--	-----------------------	-----------------------	---	-----------------------

BATBAT is to monitor the relevant process parameters linked to pollutant emissions, at catalytic cracking

5. and combustion units by using appropriate techniques and with at least the frequency given below.

Description	Minimum frequency
Monitoring of parameters linked to pollutant emissions, e.g. O_2 content in flue-gas, N and S content in fuel or feed (¹⁰)	Continuous for O ₂ content. For N and S content, periodic at a frequency based on significant fuel/feed changes

BATBAT is to monitor diffuse VOC emissions to air from the entire site by using all of the following 6. techniques:

- (i) sniffing methods associated with correlation curves for key equipment;
- (ii) optical gas imaging techniques;
- (iii) calculations of chronic emissions based on emissions factors periodically (e.g. once every two years) validated by measurements.

The screening and quantification of site emissions by periodic campaigns with optical absorption-based techniques, such as differential absorption light detection and ranging (DIAL) or solar occultation flux (SOF) is a useful complementary technique.

Description

See Section 1.20.6.

1.1.5. Operation of waste gas treatment systems

BATIn order to prevent or reduce emissions to air, BAT is to operate the acid gas removal units, sulphur

7. recovery units and all other waste gas treatment systems with a high availability and at optimal capacity.

Description

Special procedures can be defined for other than normal operating conditions, in particular:

(i) during start-up and shutdown operations;

- (ii) during other circumstances that could affect the proper functioning of the systems (e.g. regular and extraordinary maintenance work and cleaning operations of the units and/or of the waste gas treatment system);
- (iii) in case of insufficient waste gas flow or temperature which prevents the use of the waste gas treatment system at full capacity.

BATIn order to prevent and reduce ammonia (NH₃) emissions to air when applying selective catalytic

8. reduction (SCR) or selective non-catalytic reduction (SNCR) techniques, BAT is to maintain suitable operating conditions of the SCR or SNCR waste gas treatment systems, with the aim of limiting emissions of unreacted NH₃.

BAT-associated emission levels: See Table 2.

Table 2

BAT-associated emission levels for ammonia (NH₃) emissions to air for a combustion or process unit where SCR or SNCR techniques are used

Parameter	BAT-AEL z(monthly average) mg/Nm ³
Ammonia expressed as NH ₃	< 5 – 15 (¹¹) (¹²)

BATIn order to prevent and reduce emissions to air when using a sour water steam stripping unit, BAT is

9. to route the acid off-gases from this unit to an SRU or any equivalent gas treatment system.

It is <u>not</u> BAT to directly incinerate the untreated sour water stripping gases.

1.1.6. Monitoring of emissions to water

BATBAT is to monitor emissions to water by using the monitoring techniques with at least the frequency

10. given in Table 3) and in accordance with EN standards. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.

1.1.7. Emissions to water

BATIn order to reduce water consumption and the volume of contaminated water, BAT is to use all of the 11. techniques given below.

Technique	Description Ap	oplicability
(i) Water stream integration	process water app produced at new the unit level exi	nerally plicable for w units. For isting units,
	discharge by ma	plicability ay require a mplete
	reuse of water reb	ouilding of

	streams from e.g. cooling, condensates, especially for use in crude desalting	the unit or the installation
(ii)Water and drainage system for segregation of contaminated water streams	Design of an industrial site to optimise water management, where each stream is treated as appropriate, by e.g. routing generated sour water (from distillation, cracking, coking units, etc.) to appropriate pretreatment, such as a stripping unit	Generally applicable for new units. For existing units, applicability may require a complete rebuilding of the unit or the installation
(iii)Segregation of non-contaminated water streams (e.g. once- through cooling, rain water)	Design of a site in order to avoid sending non- contaminated water to general waste water treatment and to have a separate release after possible reuse for this type of stream	Generally applicable for new units. For existing units, applicability may require a complete rebuilding of the unit or the installation
(iv)Prevention of spillages and leaks	Practices that include the utilisation of special procedures and/or temporary equipment to	Generally applicable

	maintain	
	performances	
	when	
	necessary to	
	manage	
	special	
	circumstances	
	such as spills,	
	loss of	
	containment,	
	etc.	

BATIn order to reduce the emission load of pollutants in the waste water discharge to the receiving water

body, BAT is to remove insoluble and soluble polluting substances by using all of the techniques given below.

Technique	Description	Applicability
(i) Removal of insoluble substances by recovering oil	See Section 1.21.2	Generally applicable
(ii)Removal of insoluble substances by recovering suspended solids and dispersed oil	See Section 1.21.2	Generally applicable
(iii)Removal of soluble substances including biological treatment and clarification	See Section 1.21.2	Generally applicable

BAT-associated emission levels: See Table 3.

BATWhen further removal of organic substances or nitrogen is needed, BAT is to use an additional 13. treatment step as described in Section 1.21.2.

Table 3

BAT-associated emission levels for direct waste water discharges from the refining of mineral oil and gas and monitoring frequencies associated with BAT (¹³)

Parameter	Unit	BAT- AEL (yearly average)	Monitoring (¹⁴) frequency and analytical method (standard)
Hydrocarbon oil index (HOI)	mg/l	0,1-2,5	Daily EN 9377- 2 (¹⁵)
Total suspended solids (TSS)	mg/l	5-25	Daily
Chemical oxygen demand (COD) (¹⁶)	mg/l	30-125	Daily

BOD ₅	mg/l	No BAT- AEL	Weekly
Total nitrogen (¹⁷), expressed as N	mg/l	1-25 (¹⁸)	Daily
Lead, expressed as Pb	mg/l	0,005- 0,030	Quarterly
Cadmium, expressed as Cd	mg/l	0,002- 0,008	Quarterly
Nickel, expressed as Ni	mg/l	0,005- 0,100	Quarterly
Mercury, expressed as Hg	mg/l	0,0001- 0,001	Quarterly
Vanadium	mg/l	No BAT- AEL	Quarterly
Phenol Index	mg/l	No BAT- AEL	Monthly EN 14402
Benzene, toluene, ethyl benzene, xylene (BTEX)	mg/l	Benzene: 0,001- 0,050 No BAT- AEL for T, E, X	Monthly

1.1.8. Waste generation and management

BATIn order to prevent or, where that is not practicable, to reduce waste generation, BAT is to adopt and

14. implement a waste management plan that, in order of priority, ensures that waste is prepared for reuse, recycling, recovery or disposal.

BATIn order to reduce the amount of sludge to be treated or disposed of, BAT is to use one or a 15. combination of the techniques given below.

1

Technique	Description	Applicability
(i) Sludge pretreatment	Prior to final treatment (e.g. in a fluidised bed incinerator), the sludges are dewatered and/or de- oiled (by e.g.	Generally applicable

	centrifugal decanters or steam dryers) to reduce their volume and to recover oil from slop equipment	
(ii)Reuse of sludge in process units	Certain types of sludge (e.g. oily sludge) can be processed in units (e.g. coking) as part of the feed due to their oil content	Applicability is restricted to sludges that can fulfil the requirements to be processed in units with appropriate treatment

BATIn order to reduce the generation of spent solid catalyst waste, BAT is to use one or a combination of 16 the techniques given below.

16. the techniques given below.

Technique	Description
(i) Spent solid catalyst management	Scheduled
(i) Spent sone eataryst management	and safe
	handling of
	the materials
	used as
	catalyst (e.g.
	by
	contractors) in
	order to
	recover or
	reuse them in
	off-site
	facilities.
	These
	operations
	depend on the
	type of
	catalyst and
	process
(ii) Domoval of actalyst from alumny decent ail	Decanted oil
(ii)Removal of catalyst from slurry decant oil	sludge from
	process units
	(e.g. FCC
	unit) can
	contain
	significant

	concentrations
	of catalyst
	fines. These
	fines need to
	be separated
	prior to the
	reuse of
	decant oil as a
	feedstock

1.1.9. Noise

BATIn order to prevent or reduce noise, BAT is to use one or a combination of the techniques given 17. below:

- (i) make an environmental noise assessment and formulate a noise management plan as appropriate to the local environment;
- (ii) enclose noisy equipment/operation in a separate structure/unit;
- (iii) use embankments to screen the source of noise;
- (iv) use noise protection walls.

1.1.10. BAT conclusions for integrated refinery management

BATIn order to prevent or reduce diffuse VOC emissions, BAT is to apply the techniques given below.

18.	Technique	Description	Applicability
	I. Techniques related to plant design	(i)limiting the number of potential emission sources (ii)maximising inherent process containment	Applicability may be limited for existing units
		features	
		(iii)selecting high integrity equipment	
		(iv)facilitating monitoring and maintenance activities by ensuring access to	
		potentially	

	leaking components	
II. Techniques related to plant installation and commissioning	 (i)well-defined procedures for construction and assembly (ii)robust commissioning and hand-over procedures to ensure that the plant is installed in line with the design requirements 	Applicability may be limited for existing units
III.Techniques related to plant operation	Use of a risk-based leak detection and repair (LDAR) programme in order to identify leaking components, and to repair these leaks. See Section 1.20.6	Generally applicable

1.2. BAT conclusions for the alkylation process

1.2.1. Hydrofluoric acid alkylation process

BATIn order to prevent hydrofluoric acid (HF) emissions to air from the hydrofluoric acid alkylation19. process, BAT is to use wet scrubbing with alkaline solution to treat incondensable gas streams prior to venting to flare.

Description

See Section 1.20.3.

Applicability:

The technique is generally applicable. Safety requirements, due to the hazardous nature of hydrofluoric acid, are to be considered

BATIn order to reduce emissions to water from the hydrofluoric acid alkylation process, BAT is to use a 20. combination of the techniques given below.

Technique	Description	Applicability	
(i) Precipitation/Neutralisation step	Precipitation (with, e.g. calcium or	Generally applicable.	

	aluminium-	Safety
	based	requirements
	additives) or	due to the
	neutralisation	hazardous
	(where the	nature of
	effluent is	hydrofluoric
	indirectly	acid (HF) are to
	neutralised	be considered
	with	
	potassium	
	hydroxide	
	(KOH))	
(ii)Separation step	The insoluble	Generally
	compounds	applicable
	produced at	
	the first step	
	(e.g. CaF_2 or	
	AlF_3) are	
	separated in	
	e.g. a	
	settlement	
	basin	

1.2.2. Sulphuric acid alkylation process

BATIn order to reduce the emissions to water from the sulphuric acid alkylation process, BAT is to reduce

21. the use of sulphuric acid by regenerating the spent acid and to neutralise the waste water generated by this process before routing to waste water treatment.

1.3. BAT conclusions for base oil production processes

BATIn order to prevent and reduce the emissions of hazardous substances to air and water from base oil 22. production processes, BAT is to use one or a combination of the techniques given below.

Technique	Description	Applicability
(i)Closed process with a solvent recovery	Process where the solvent, after being used during base oil manufacturing (e.g. in extraction, dewaxing units), is recovered through distillation and stripping steps. See Section 1.20.7	Generally applicable
(ii)Multi-effect extraction solvent-based process	Solvent extraction process including	Generally applicable to

	several stages of evaporation (e.g. double or triple effect) for a lower loss of containment	new units. The use of a triple effect process may be restricted to non-fouling feed stocks
(iii)Extraction unit processes using less hazardous substances	Design (new plants) or implement changes (into existing) so that the plant operates a solvent extraction process with the use of a less hazardous solvent: e.g. converting furfural or phenol extraction into the n- methylpyrrolidone (NMP) process	Generally applicable to new units. Converting existing units to another solvent-based process with different physico- chemical properties may require substantial modifications
(iv)Catalytic processes based on hydrogenation	Processes based on conversion of undesired compounds via catalytic hydrogenation similar to hydrotreatment. See Section 1.20.3 (Hydrotreatment)	Generally applicable to new units

1.4. BAT conclusions for the bitumen production process

BATIn order to prevent and reduce emissions to air from the bitumen production process, BAT is to treat 23. the gaseous overhead by using one of the techniques given below.

Technique	Description	Applicability
(i) Thermal oxidation of gaseous overhead over 800 °C	See Section 1.20.6	Generally applicable for the bitumen blowing unit
(ii)Wet scrubbing of gaseous overhead	See Section 1.20.3	Generally applicable for

1.5. BAT conclusions for the fluid catalytic cracking process

BATIn order to prevent or reduce NO_X emissions to air from the catalytic cracking process (regenerator), 24. BAT is to use one or a combination of the techniques given below.

I. Primary or process-related techniques, such as:

Technique	Description	Applicability
Process optimisation and use of	promoters or additives	•
(i) Process optimisation	Combination of operating conditions or practices aimed at reducing NO _X formation, e.g. lowering the excess oxygen in the flue-gas in full combustion mode, air staging of the CO boiler in partial combustion mode, provided that the CO boiler is appropriately designed	Generally applicable
(ii)Low-NO _X CO oxidation promoters	Use of a substance that selectively promotes the combustion of CO only and prevents the oxidation of the nitrogen that contains intermediates to NO _X : e.g.	Applicable only in full combustion mode for the substitution of platinum-based CO promoters. Appropriate distribution of air in the regenerator may be required to

	non-platinum promoters	obtain the maximum benefit
(iii)Specific additives for NO _X reduction	Use of specific catalytic additives for enhancing the reduction of NO by CO	Applicable only in full combustion mode in an appropriate design and with achievable oxygen excess. The applicability of copper-based NO_X reduction additives may be limited by the gas compressor capacity

II. Secondary or end-of-pipe techniques, such as:

Technique	Description	Applicability
(i) Selective catalytic reduction (SCR)	See Section 1.20.2	To avoid potential fouling downstream, additional filtering might be required upstream of the SCR. For existing units, the applicability may be limited by space availability
(ii)Selective non-catalytic reduction (SNCR)	See Section 1.20.2	For partial combustion FCCs with CO boilers, a sufficient residence time at the appropriate temperature is required.

		For full combustion FCCs without auxiliary boilers, additional fuel injection (e.g. hydrogen) may be required to match a lower temperature window
(iii)Low temperature oxidation	See Section 1.20.2	Need for additional scrubbing capacity. Ozone generation and the associated risk management need to be properly addressed. The applicability may be limited by the need for additional waste water treatment and related cross- media effects (e.g. nitrate emissions) and by an insufficient supply of liquid oxygen (for ozone generation). The applicability of the technique may be limited by space availability

BAT-associated emission levels for NO_{X} emissions to air from the regenerator in the catalytic cracking

process

Parameter	Type of unit/combustion mode	BAT- AEL (monthly average) mg/Nm ³
NO _X , expressed as NO ₂	New unit/all combustion mode	< 30-100
	Existing unit/full combustion mode	< 100- 300 (¹⁹)
	Existing unit/partial combustion mode	100- 400 (¹⁹)

The associated monitoring is in BAT 4.

BATIn order to reduce dust and metals emissions to air from the catalytic cracking process (regenerator), 25. BAT is to use one or a combination of the techniques given below.

I. Primary or process-related techniques, such as:

Technique	Description	Applicability
(i)Use of an attrition-resistant catalyst	Selection of catalyst substance that is able to resist abrasion and fragmentation in order to reduce dust emissions	Generally applicable provided the activity and selectivity of the catalyst are sufficient
(ii)Use of low sulphur feedstock (e.g. by feedstock selection or by hydrotreatment of feed)	Feedstock selection favours low sulphur feedstocks among the possible sources to be processed at the unit. Hydrotreatment aims at reducing the sulphur, nitrogen and	Requires sufficient availability of low sulphur feedstocks, hydrogen production and hydrogen sulphide (H ₂ S) treatment capacity (e.g. amine and Claus units)

	metal contents	
	of the feed.	
	See Section	
	1.20.3	

II. Secondary or end-of-pipe techniques, such as:

Technique	Description	Applicability
(i)Electrostatic precipitator (ESP)	See Section 1.20.1	For existing units, the applicability may be limited by space availability
(ii)Multistage cyclone separators	See Section 1.20.1	Generally applicable
(iii)Third stage blowback filter	See Section 1.20.1	Applicability may be restricted
(iv)Wet scrubbing	See Section 1.20.3	The applicability may be limited in arid areas and in the case where the by- products from treatment (including e.g. waste water with high level of salts) cannot be reused or appropriately disposed of. For existing units, the applicability may be limited by space availability

BAT-associated emission levels: See Table 5.

BAT-associated emission levels for dust emissions to air from the regenerator in the catalytic cracking

Parameter	Type of unit	BAT-AEL (monthly average) (²⁰) mg/Nm ³
Dust	New unit	10-25
	Existing unit	10-50 (²¹)

The associated monitoring is in BAT 4.

BATIn order to prevent or reduce SO_X emissions to air from the catalytic cracking process (regenerator), 26. BAT is to use one or a combination of the techniques given below.

I. Primary or process-related techniques, such as:

Technique	Description	Applicability
(i)Use of SO _X reducing catalyst additives	Use of a substance that transfers the sulphur associated with coke from the regenerator back to the reactor. See description in 1.20.3	Applicability may be restricted by regenerator conditions design. Requires appropriate hydrogen sulphide abatement capacity (e.g. SRU)
(ii)Use of low sulphur feedstock (e.g. by feedstock selection or by hydrotreatment of the feed)	Feedstock selection favours low sulphur feedstocks among the possible sources to be processed at the unit. Hydrotreatment aims at reducing the sulphur, nitrogen and metal contents of the feed.	Requires sufficient availability of low sulphur feedstocks, hydrogen production and hydrogen sulphide (H ₂ S) treatment capacity (e.g. amine and Claus units)

	See description	
	in 1.20.3	

II. Secondary or end-of-pipe techniques, such as:

Techniques	Description	Applicability
(i)Non-regenerative scrubbing	Wet scrubbing or seawater scrubbing. See Section 1.20.3	The applicability may be limited in arid areas and in the case where the by- products from treatment (including e.g. waste water with high level of salts) cannot be reused or appropriately disposed of. For existing units, the applicability may be limited by space availability
(ii)Regenerative scrubbing	Use of a specific SO _X absorbing reagent (e.g. absorbing solution) which generally enables the recovery of sulphur as a by-product during a regenerating cycle where the reagent is reused. See Section 1.20.3	The applicability is limited to the case where regenerated by- products can be sold. For existing units, the applicability may be limited by the existing sulphur recovery capacity as well as by space availability

BAT-associated emission levels: See Table 6.

BAT-associated emission levels for SO₂ emissions to air from the regenerator in the catalytic cracking process

Parameter	Type of units/mode	BAT- AEL (monthly average) mg/Nm ³
SO ₂	New units	≤ 300
	Existing units/full combustion	< 100- 800 (²²)
	Existing units/partial combustion	100- 1 200 (²²)

The associated monitoring is in BAT 4.

BATIn order to reduce carbon monoxide (CO) emissions to air from the catalytic cracking process 27. (regenerator), BAT is to use one or a combination of the techniques given below.

Technique	Description	Applicability
(i)Combustion operation control	See Section 1.20.5	Generally applicable
(ii)Catalysts with carbon monoxide (CO) oxidation promoters	See Section 1.20.5	Generally applicable only for full combustion mode
(iii)Carbon monoxide (CO) boiler	See Section 1.20.5	Generally applicable only for partial combustion mode

BAT-associated emission levels: See Table 7.

Table 7

BAT-associated emission levels for carbon monoxide emissions to air from the regenerator in the catalytic cracking process for partial combustion mode

Parameter	Combustion mode	BAT- AEL
		(monthly
		aver

		mg/Nm ³
Carbon monoxide, expressed as CO	Partial combustion mode	$\leq 100 (^{23})$

The associated monitoring is in BAT 4.

1.6. BAT conclusions for the catalytic reforming process

BATIn order to reduce emissions of polychlorinated dibenzodioxins/furans (PCDD/F) to air from the 28. catalytic reforming unit, BAT is to use one or a combination of the techniques given below.

Technique	Description	Applicability
(i)Choice of the catalyst promoter	Use of catalyst promoter in order to minimise polychlorinated dibenzodioxins/furans (PCDD/F) formation during regeneration. See Section 1.20.7	Generally applicable
(ii)	•	
Treatment of the regeneration flue-gas		
a. Regeneration gas recycling loop with adsorption bed	Waste gas from the regeneration step is treated to remove chlorinated compounds (e.g. dioxins)	Generally applicable to new units. For existing units the applicability may depend on the current regeneration unit design
b. Wet scrubbing	See Section 1.20.3	Not applicable to semi- regenerative reformers
c. Electrostatic precipitator (ESP)	See Section 1.20.1	Not applicable to semi- regenerative reformers

BATIn order to reduce emissions to air from the coking production processes, BAT is to use one or a 29. combination of the techniques given below:

Primary or process-related techniques, such as:

Technique	Description	Applicability
(i)Collection and recycling of coke fines	Systematic collection and recycling of coke fines generated during the whole coking process (drilling, handling, crushing, cooling, etc.)	Generally applicable
(ii)Handling and storage of coke according to BAT 3	See BAT 3	Generally applicable
(iii)Use of a closed blowdown system	Arrestment system for pressure relief from the coke drums	Generally applicable
(iv)Recovery of gas (including the venting prior to the drum being opened to atmosphere) as a component of refinery fuel gas (RFG)	Carrying venting from the coke drum to the gas compressor to recover as RFG, rather than flaring. For the flexicoking process, a conversion step (to convert the carbonyl sulphide (COS) into H_2S) is needed prior to treating the gas from the	For existing units, the applicability of the techniques may be limited by space availability

BATIn order to reduce NO_X emissions to air from the calcining of green coke process, BAT is to use 30. selective non-catalytic reduction (SNCR).

Description

See Section 1.20.2.

Applicability

The applicability of the SNCR technique (especially with respect to residence time and temperature window) may be restricted due to the specificity of the calcining process.

BATIn order to reduce SO_X emissions to air from the calcining of green coke process, BAT is to use one 31. or a combination of the techniques given below.

Technique	Description	Applicability
(i)Non-regenerative scrubbing	Wet scrubbing or seawater scrubbing. See Section 1.20.3	The applicability may be limited in arid areas and in the case where the by- products from treatment (including e.g. waste water with high level of salts) cannot be reused or appropriately disposed of. For existing units, the applicability may be limited by space availability
(ii)Regenerative scrubbing	Use of a specific SO _X absorbing reagent (e.g. absorbing solution) which generally enables the recovery of sulphur as a by-product during a regenerating cycle where	The applicability is limited to the case where regenerated by- products can be sold. For existing units, the applicability may be limited by the existing sulphur recovery capacity as wel

the reagent is	as by space
reused.	availability
See Section	
1.20.3	

BATIn order to reduce dust emissions to air from the calcining of green coke process, BAT is to use a 32. combination of the techniques given below.

Technique	Description	Applicability
(i)Electrostatic precipitator (ESP)	See Section 1.20.1	For existing units, the applicability may be limited by space availability. For graphite and anode coke calcining production, the applicability may be restricted due to the high resistivity of the coke particles
(ii)Multistage cyclone separators	See Section 1.20.1	Generally applicable

BAT-associated emission levels: See Table 8

Table 8

BAT-associated emission levels for dust emissions to air from a unit for the calcining of green coke

Parameter	BAT- AEL (monthly average) mg/Nm ³
Dust	10-50 (²⁴) (²⁵)

The associated monitoring is in BAT 4.

BATIn order to reduce water consumption and emissions to water from the desalting process, BAT is to 33. use one or a combination of the techniques given below.

Technique	Description	Applicability
i) Recycling water and optimisation of the desalting process	An ensemble of good desalting practices aiming at increasing the efficiency of the desalter and reducing wash water usage e.g. using low shear mixing devices, low water pressure. It includes the management of key parameters for washing (e.g. good mixing) and separation (e.g. pH, density, viscosity, electric field potential for coalescence) steps	Generally applicable
(ii)Multistage desalter	Multistage desalters operate with water addition and dehydration, repeated through two stages or more for achieving a better efficiency in the separation and therefore less corrosion in further processes	Applicable for new units

1.9. BAT conclusions for the combustion units

BATIn order to prevent or reduce NO_X emissions to air from the combustion units, BAT is to use one or a 34. combination of the techniques given below.

I. Primary or process-related techniques, such as:

Technique	Description	Applicability
(i)		
Selection or treatment of fuel		
(a)Use of gas to replace liquid fuel	Gas generally contains less nitrogen than liquid and its combustion leads to a lower level of NO_X emissions. See Section 1.20.3	The applicability may be limited by the constraints associated with the availability of low sulphur gas fuels, which may be impacted by the energy policy of the Member State
(b)Use of low nitrogen refinery fuel oil (RFO) e.g. by RFO selection or by hydrotreatment of RFO	Refinery fuel oil selection favours low nitrogen liquid	Applicability is limited by the availability of low nitrogen

	fuels among the possible sources to be used at the unit. Hydrotreatment aims at reducing the sulphur, nitrogen and metal contents of the fuel. See Section 1.20.3	liquid fuels, hydrogen production and hydrogen sulphide (H ₂ S) treatment capacity (e.g. amine and Claus units)
(ii) Combustion modifications		
(a)Staged combustion: —air staging —fuel staging	See Section 1.20.2	Fuel staging for mixed or liquid firing may require a specific burner design
(b)Optimisation of combustion	See Section 1.20.2	Generally applicable
(c)Flue-gas recirculation	See Section 1.20.2	Applicable through the use of specific burners with internal recirculation of the flue-gas. The applicability may be restricted to retrofitting external flue- gas recirculation to units with a forced/induced draught mode of operation
(d)Diluent injection	See Section 1.20.2	Generally applicable for gas turbines where appropriate

		inert diluents are available
(e)Use of low-NO _X burners (LNB)	See Section 1.20.2	Generally applicable for new units taking into account, the fuel-specific limitation (e.g. for heavy oil). For existing units, applicability may be restricted by the complexity caused by site- specific conditions e.g. furnaces design, surrounding devices. In very specific cases, substantial modifications may be required. The applicability may be restricted for furnaces in the delayed coking process, due to possible coke generation in the furnaces. In gas turbines, the applicability is restricted to low hydrogen content fuels (generally < 10 %)

II. Secondary or end-of-pipe techniques, such as:

Technique	Description	Applicability
-----------	-------------	---------------

(i) Selective catalytic reduction (SCR)	See Section 1.20.2	Generally applicable for new units. For existing units, the applicability may be constrained due to the requirements for significant space and optimal reactant injection
(ii)Selective non-catalytic reduction (SNCR)	See Section 1.20.2	Generally applicable for new units. For existing units, the applicability may be constrained by the requirement for the temperature window and the residence time to be reached by reactant injection
(iii)Low temperature oxidation	See Section 1.20.2	The applicability may be limited by the need for additional scrubbing capacity and by the fact that ozone generation and the associated risk management need to be properly addressed. The applicability may be limited

		by the need for additional waste water treatment and related cross- media effects (e.g. nitrate emissions) and by an insufficient supply of liquid oxygen (for ozone generation). For existing units, the applicability of the technique may be limited by space availability
(iv)SNO _X combined technique	See Section 1.20.4	Applicable only for high flue-gas (e.g. $> 800\ 000$ Nm ³ /h) flow and when combined NO _X and SO _X abatement is needed

BAT-associated emission levels: See Table 9, Table 10 and Table 11.

Table 9

BAT-associated emission levels for $\mathbf{NO}_{\mathbf{X}}$ emissions to air from a gas turbine

Parameter	Type of equipment	BAT- AEL (²⁶) (monthly average) mg/Nm ³ at 15 % O ₂
NO_X expressed as NO_2	Gas turbine (including combined cycle gas	40-120 (existing turbine)

turbine —	
CCGT) and	20-50
integrated	
gasification	(new turbine) (²⁷)
combined	turbine) (-*)
cycle turbine	
(IGCC))	

The associated monitoring is in BAT 4.

Table 10

BAT-associated emission levels for NO_X emissions to air from a gas-fired combustion unit, with the exception of gas turbines

Parameter	Type of combustion	BAT- AEL (monthly average) mg/Nm ³
NO _X expressed as NO ₂	Gas firing	30-150 for existing unit (²⁸)
		30-100 for new unit

The associated monitoring is in BAT 4.

Table 11

BAT-associated emission levels for NO_X emissions to air from a multi-fuel fired combustion unit with the exception of gas turbines

Parameter	Type of combustion	BAT- AEL (monthly average) mg/Nm ³
NO _X expressed as NO ₂	Multi-fuel fired combustion unit	30-300 for existing unit (²⁹) (³⁰)

The associated monitoring is in BAT 4.

BATIn order to prevent or reduce dust and metal emissions to air from the combustion units, BAT is to use 35. one or a combination of the techniques given below.

I. Primary or process-related techniques, such as:

Technique	Description	Applicability
(i) Selection or treatment of fuel		
(a)Use of gas to replace liquid fuel	Gas instead of liquid combustion leads to lower level of dust emissions See Section 1.20.3	The applicability may be limited by the constraints associated with the availability of low sulphur fuels such as natural gas, which may be impacted by the energy policy of the Member State
(b)Use of low sulphur refinery fuel oil (RFO) e.g. by RFO selection or by hydrotreatment of RFO	Refinery fuel oil selection favours low sulphur liquid fuels among the possible sources to be used at the unit. Hydrotreatment aims at reducing the sulphur, nitrogen and metal contents of the fuel. See Section 1.20.3	The applicability may be limited by the availability of low sulphur liquid fuels, hydrogen production and the hydrogen sulphide (H ₂ S) treatment capacity (e.g. amine and Claus units)
(ii) Combustion modifications		
(a)Optimisation of combustion	See Section 1.20.2	Generally applicable to all types of combustion
(b)Atomisation of liquid fuel	Use of high pressure to reduce the	Generally applicable to liquid fuel firing

droplet size of
liquid fuel.
Recent optimal
burner designs
generally
include steam
atomisation

II. Secondary or end-of-pipe techniques, such as:

Technique	Description	Applicability
(i)Electrostatic precipitator (ESP)	See Section 1.20.1	For existing units, the applicability may be limited by space availability
(ii)Third stage blowback filter	See Section 1.20.1	Generally applicable
(iii)Wet scrubbing	See Section 1.20.3	The applicability may be limited in arid areas and in the case where the by- products from treatment (including e.g. waste water with a high level of salt) cannot be reused or appropriately disposed of. For existing units, the applicability of the technique may be limited by space availability
(iv)Centrifugal washers	See Section 1.20.1	Generally applicable

BAT-associated emission levels: See Table 12.

BAT-associated emission levels for dust emissions to air from a multi-fuel fired combustion unit with the exception of gas turbines

Parameter	Type of combustion	BAT- AEL (monthly average) mg/Nm ³
Dust	Multi-fuel firing	5-50 for existing unit (³¹) (³²) 5-25 for new unit < 50 MW

The associated monitoring is in BAT 4.

BATIn order to prevent or reduce SO_X emissions to air from the combustion units, BAT is to use one or a 36. combination of the techniques given below.

I. Primary or process-related techniques based on a selection or a treatment of the fuel, such as:

Technique	Description	Applicability
(i)Use of gas to replace liquid fuel	See Section 1.20.3	The applicability may be limited by the constraints associated with the availability of low sulphur fuels such as natural gas, which may be impacted by the energy policy of the Member State
(ii)Treatment of refinery fuel gas (RFG)	Residual H_2S concentration in RFG depends on the treatment process parameter, e.g. the amine-	For low calorific gas containing carbonyl sulphide (COS) e.g. from coking units, a converter may be required

	scrubbing pressure. See Section 1.20.3	prior to H ₂ S removal
(iii)Use of low sulphur refinery fuel oil (RFO) e.g. by RFO selection or by hydrotreatment of RFO	Refinery fuel oil selection favours low sulphur liquid fuels among the possible sources to be used at the unit. Hydrotreatment aims at reducing the sulphur, nitrogen and metal contents of the fuel. See Section 1.20.3	The applicability is limited by the availability of low sulphur liquid fuels, hydrogen production and the hydrogen sulphide (H ₂ S) treatment capacity (e.g. amine and Claus units)

II. Secondary or end-of-pipe techniques:

Technique	Description	Applicability
(i)Non-regenerative scrubbing	Wet scrubbing or seawater scrubbing. See Section 1.20.3	The applicability may be limited in arid areas and in the case where the by- products from treatment (including e.g. waste water with high level of salts) cannot be reused or appropriately disposed of. For existing units, the applicability of the technique may be limited by space availability
(ii)Regenerative scrubbing	Use of a specific SO _X	The applicability is

	absorbing reagent (e.g. absorbing solution) which generally enables the recovery of sulphur as a by-product during a regenerating cycle where the reagent is reused. See Section 1.20.3	limited to the case where regenerated by- products can be sold. Retrofitting to existing units may be limited by the existing sulphur recovery capacity. For existing units, the applicability of the technique may be limited by space availability
(iii)SNO _X combined technique	See Section 1.20.4	Applicable only for high flue-gas (e.g. > 800 000 Nm ³ /h) flow and when combined NO _X and SO _X abatement is required

BAT-associated emission levels: See Table 13 and Table 14.

Table 13

BAT-associated emission levels for SO₂ emissions to air from a combustion unit firing refinery fuel gas (RFG), with the exception of gas turbines

Parameter	BAT- AEL (monthly average) mg/Nm ³
SO ₂	5-35 (³³)

The associated monitoring is in BAT 4.

BAT-associated emission levels for SO₂ emissions to air from multi-fuel fired combustion units, with the exception of gas turbines and stationary gas engines

This BAT-AEL refers to the weighted average emissions from existing multi-fuel fired combustion units within the refinery, with the exception of gas turbines and stationary gas engines.

Parameter	BAT- AEL (monthly average) mg/Nm ³
SO ₂	35-600

The associated monitoring is in BAT 4.

BATIn order to reduce carbon monoxide (CO) emissions to air from the combustion units, BAT is to use a 37. combustion operation control.

Description

See Section 1.20.5.

BAT-associated emission levels: See Table 15.

Table 15

BAT-associated emission levels for carbon monoxide emissions to air from a combustion unit

Parameter	BAT- AEL (monthly average) mg/Nm ³
Carbon monoxide, expressed as CO	≤ 100

The associated monitoring is in BAT 4.

1.10. BAT conclusions for the etherification process

BATIn order to reduce emissions to air from the etherification process, BAT is to ensure the appropriate 38. treatment of process off-gases by routing them to the refinery fuel gas system.

BATIn order to prevent upset of the biotreatment, BAT is to use a storage tank and an appropriate unit

39. production plan management to control the toxic components dissolved content (e.g. methanol, formic acid, ethers) of the waste water stream prior to final treatment.

1.11. BAT conclusions for the isomerisation process

BATIn order to reduce emissions to air of chlorinated compounds, BAT is to optimise the use of40. chlorinated organic compounds used to maintain catalyst activity when such a process is in place or to use non-chlorinated catalytic systems.

1.12. BAT conclusions for the natural gas refinery

BATIn order to reduce sulphur dioxide emissions to air from the natural gas plant, BAT is to apply 41. BAT 54.

BATIn order to reduce nitrogen oxides (NO_X) emissions to air from the natural gas plant, BAT is to apply 42. BAT 34

BATIn order to prevent emissions of mercury when present in raw natural gas, BAT is to remove the 43. mercury and recover the mercury-containing sludge for waste disposal.

1.13. BAT conclusions for the distillation process

BATIn order to prevent or reduce waste water flow generation from the distillation process, BAT is to use 44. liquid ring vacuum pumps or surface condensers.

Applicability

May not be applicable in some retrofit cases. For new units, vacuum pumps, either in or not in combination with steam ejectors, may be needed to achieve a high vacuum (10 mm Hg). Also, a spare should be available in case the vacuum pump fails.

BATIn order to prevent or reduce water pollution from the distillation process, BAT is to route sour water 45. to the stripping unit.

BATIn order to prevent or reduce emissions to air from distillation units, BAT is to ensure the appropriate

46. treatment of process off-gases, especially incondensable off-gases, by acid gas removal prior to further use.

Applicability

Generally applicable for crude and vacuum distillation units. May not be applicable for stand-alone lubricant and bitumen refineries with emissions of less than 1 t/d of sulphur compounds. In specific refinery configurations, applicability may be restricted, due to the need for e.g. large piping, compressors or additional amine treating capacity.

1.14. BAT conclusions for the products treatment process

BATIn order to reduce emissions to air from the products treatment process, BAT is to ensure the

47. appropriate disposal of off-gases, especially odorous spent air from sweetening units, by routing them to destruction, e.g. by incineration.

Applicability

Generally applicable to products treatment processes where the gas streams can be safely processed to the destruction units. May not be applicable to sweetening units, due to safety reasons.

BATIn order to reduce waste and waste water generation when a products treatment process using caustic48. is in place, BAT is to use cascading caustic solution and a global management of spent caustic, including recycling after appropriate treatment, e.g. by stripping.

1.15. BAT conclusions for storage and handling processes

BATIn order to reduce VOC emissions to air from the storage of volatile liquid hydrocarbon compounds,

49. BAT is to use floating roof storage tanks equipped with high efficiency seals or a fixed roof tank connected to a vapour recovery system.

Description

High efficiency seals are specific devices for limiting losses of vapour, e.g. improved primary seals, additional multiple (secondary or tertiary) seals (according to quantity emitted).

Applicability

The applicability of high efficiency seals may be restricted for retrofitting tertiary seals in existing tanks.

BATIn order to reduce VOC emissions to air from the storage of volatile liquid hydrocarbon compounds, 50. BAT is to use one or a combination of the techniques given below.

Technique	Description	Applicability
(i) Manual crude oil tank cleaning	Oil tank cleaning is performed by workers entering the tank and removing sludge manually	Generally applicable
(ii)Use of a closed-loop system	For internal inspections, tanks are periodically emptied, cleaned and rendered gas- free. This cleaning includes dissolving the tank bottom. Closed-loop systems that can be combined with end-of- pipe mobile abatement techniques prevent or reduce VOC emissions	The applicability may be limited by e.g. the type of residues, tank roof construction or tank materials

BATIn order to prevent or reduce emissions to soil and groundwater from the storage of liquid 51. hydrocarbon compounds, BAT is to use one or a combination of the techniques given below.

Technique	Description	Applicability
-----------	-------------	---------------

(i) Maintenance programme prevention and control	including	corrosion	monitoring,	A management system including leak detection and operational controls to prevent overfilling, inventory control and risk-based inspection procedures on tanks at intervals to prove their integrity, and maintenance to improve tank containment. It also includes a system response to spill consequences to act before spills can reach the groundwater. To be especially reinforced during maintenance periods	Generally applicable
(ii)Double bottomed tanks				A second impervious bottom that provides a measure of protection against releases from the first material	Generally applicable for new tanks and after overhaul of existing tanks (³⁴)
(iii)Impervious membrane line	ers			A continuous leak barrier under the	Generally applicable for new tanks and

	entire bottom surface of the tank	after an overhaul of existing tanks (³⁴)
(iv)Sufficient tank farm bund containment	A tank farm bund is designed to contain large spills potentially caused by a shell rupture or overfilling (for both environmental and safety reasons). Size and associated building rules are generally defined by local regulations	Generally applicable

BATIn order to prevent or reduce VOC emissions to air from loading and unloading operations of volatile

52. liquid hydrocarbon compounds, BAT is to use one or a combination of the techniques given below to achieve a recovery rate of at least 95 %.

Technique	Description	Applicability (³⁵)
Vapour recovery by: (i)Condensation (ii)Absorption (iii)Adsorption (iv)Membrane separation (v)Hybrid systems	See Section 1.20.6	Generally applicable to loading/unloading operations where annual throughput is > 5 000 m ³ /yr. Not applicable to loading/unloading operations for sea-going vessels with an annual
		throughput < 1 million m ³ /yr

BAT-associated emission levels: See Table 16.

Table 16

BAT-associated emission levels for non-methane VOC and benzene emissions to air from loading and unloading operations of volatile liquid hydrocarbon compounds

Parameter	BAT-AEL (hourly average) (³⁶)
NMVOC	0,15-10 g/Nm ³ (³⁷) (³⁸)
Benzene (³⁸)	< 1 mg/Nm ³

1.16. BAT conclusions for visbreaking and other thermal processes

BATIn order to reduce emissions to water from visbreaking and other thermal processes, BAT is to ensure 53. the appropriate treatment of waste water streams by applying the techniques of BAT 11.

1.17. BAT conclusions for waste gas sulphur treatment

BATIn order to reduce sulphur emissions to air from off-gases containing hydrogen sulphides (H_2S), BAT 54. is to use all of the techniques given below.

Technique	Description	Applicability (³⁹)
(i)Acid gas removal e.g. by amine treating	See Section 1.20.3	Generally applicable
(ii)Sulphur recovery unit (SRU), e.g. by Claus process	See Section 1.20.3	Generally applicable
(iii)Tail gas treatment unit (TGTU)	See Section 1.20.3	For retrofitting existing SRU, the applicability may be limited by the SRU size and configuration of the units and the type of sulphur recovery process already in place

BAT-associated environmental performance levels (BAT-AEPL): See Table 17.

Table 17

BAT-associated environmental performance levels for a waste gas sulphur (H₂S) recovery system

BAT-
associated
environmental performance
performance level (monthly average)

Acid gas removal	Achieve hydrogen sulphides (H ₂ S) removal in the treated RFG in order to meet gas firing BAT-AEL for BAT 36
Sulphur recovery efficiency (⁴⁰)	New unit: 99,5 – > 99,9 %
	Existing unit: ≥ 98,5 %

The associated monitoring is described in BAT 4.

1.18. BAT conclusions for flares

BATIn order to prevent emissions to air from flares, BAT is to use flaring only for safety reasons or for 55. non-routine operational conditions (e.g. start-ups, shutdown).

BATIn order to reduce emissions to air from flares when flaring is unavoidable, BAT is to use the 56. techniques given below.

Technique	Description	Applicability
(i)Correct plant design	See Section 1.20.7	Applicable to new units. Flare gas recovery system may be retrofitted in existing units
(ii)Plant management	See Section 1.20.7	Generally applicable
(iii)Correct flaring devices design	See Section 1.20.7	Applicable to new units
(iv)Monitoring and reporting	See Section 1.20.7	Generally applicable

1.19. BAT conclusions for integrated emission management

BATIn order to achieve an overall reduction of NO_X emissions to air from combustion units and fluid

57. catalytic cracking (FCC) units, BAT is to use an integrated emission management technique as an alternative to applying BAT 24 and BAT 34.

Description

The technique consists of managing NO_X emissions from several or all combustion units and FCC units on a refinery site in an integrated manner, by implementing and operating the most appropriate combination of BAT across the different units concerned and monitoring the effectiveness thereof, in such a way that the resulting total emissions are equal to or lower than the emissions that would be achieved through a unit-by-unit application of the BAT-AELs referred to in BAT 24 and BAT 34.

This technique is especially suitable to oil refining sites:

- with a recognised site complexity, multiplicity of combustion and process units interlinked in terms of their feedstock and energy supply;
- with frequent process adjustments required in function of the quality of the crude received;
- with a technical necessity to use a part of process residues as internal fuels, causing frequent adjustments of the fuel mix according to process requirements.

BAT-associated emission levels: See Table 18.

In addition, for each new combustion unit or new FCC unit included in the integrated emission management system, the BAT-AELs set out under BAT 24 and BAT 34 remain applicable.

Table 18

BAT-associated emission levels for NO_x emissions to air when applying BAT 57

The BAT-AEL for NO_x emissions from the units concerned by BAT 57, expressed in mg/Nm³ as a monthly average value, is equal to or less than the weighted average of the NO_x concentrations (expressed in mg/Nm³ as a monthly average) that would be achieved by applying in practice at each of those units techniques that would enable the units concerned to meet the following:

- (a) for catalytic cracking process (regenerator) units: the BAT-AEL range set out in Table 4 (BAT 24);
- (b) for combustion units burning refinery fuels alone or simultaneously with other fuels: the BAT-AEL ranges set out in Tables 9, 10 and 11 (BAT 34).

This BAT-AEL is expressed by the following formula:

Formula

Notes:

- 1. The applicable reference conditions for oxygen are those specified in Table 1.
- 2. The weighing of the emission levels of the individual units is done on the basis of the flue-gas flow rate of the unit concerned, expressed as a monthly average value (Nm³/hour), which is representative for the normal operation of that unit within the refinery installation (applying the reference conditions under Note 1).
- 3. In case of substantial and structural fuel changes which are affecting the applicable BAT-AEL for a unit or other substantial and structural changes in the nature or functioning of the units concerned, or in case of their replacement or extension or the addition of combustion units or FCC units, the BAT-AEL defined in Table 18 needs to be adjusted accordingly.

Monitoring associated with BAT 57

BAT for monitoring emissions of NO_x under an integrated emission management technique is as in BAT 4, complemented with the following:

- a monitoring plan including a description of the processes monitored, a list of the emission sources and source streams (products, waste gases) monitored for each process and a description of the methodology (calculations, measurements) used and the underlying assumptions and associated level of confidence;
- continuous monitoring of the flue-gas flow rates of the units concerned, either through direct measurement or by an equivalent method;
- a data management system for collecting, processing and reporting all monitoring data needed to determine the emissions from the sources covered by the integrated emission management technique.

BATIn order to achieve an overall reduction of SO_2 emissions to air from combustion units, fluid catalytic

58. cracking (FCC) units and waste gas sulphur recovery units, BAT is to use an integrated emission management technique as an alternative to applying BAT 26, BAT 36 and BAT 54.

Description

The technique consists of managing SO_2 emissions from several or all combustion units, FCC units and waste gas sulphur recovery units on a refinery site in an integrated manner, by implementing and operating the most appropriate combination of BAT across the different units concerned and monitoring the effectiveness thereof, in such a way that the resulting total emissions are equal to or lower than the emissions that would be achieved through a unit-by-unit application of the BAT-AELs referred to in BAT 26 and BAT 36 as well as the BAT-AEPL set out under BAT 54.

This technique is especially suitable to oil refining sites:

- with a recognised site complexity, multiplicity of combustion and process units interlinked in terms of their feedstock and energy supply;
- with frequent process adjustments required in function of the quality of the crude received;
- with a technical necessity to use a part of process residues as internal fuels, causing frequent adjustments of the fuel mix according to process requirements.

BAT associated emission level: See Table 19.

In addition, for each new combustion unit, new FCC unit or new waste gas sulphur recovery unit included in the integrated emission management system, the BAT-AELs set out under BAT 26 and BAT 36 and the BAT-AEPL set out under BAT 54 remain applicable.

Table 19

BAT-associated emission levels for SO₂ emissions to air when applying BAT 58

The BAT-AEL for SO_2 emissions from the units concerned by BAT 58, expressed in mg/Nm³ as a monthly average value, is equal to or less than the weighted average of the SO_2 concentrations (expressed in mg/Nm³ as a monthly average) that would be achieved by applying in practice at each of those units techniques that would enable the units concerned to meet the following:

- (a) for catalytic cracking process (regenerator) units: the BAT-AEL ranges set out in Table 6 (BAT 26);
- (b) for combustion units burning refinery fuels alone or simultaneously with other fuels: the BAT-AEL ranges set out in Table 13 and in Table 14 (BAT 36); and
- (c) for waste gas sulphur recovery units: the BAT-AEPL ranges set out in Table 17 (BAT 54).

This BAT-AEL is expressed by the following formula:

Formula

Notes:

- 1. The applicable reference conditions for oxygen are those specified in Table 1.
- 2. The weighing of the emission levels of the individual units is done on the basis of the flue-gas flow rate of the unit concerned, expressed as the monthly average value (Nm³/hour), which is representative for the normal operation of that unit within the refinery installation (applying the reference conditions under Note 1).
- 3. In case of substantial and structural fuel changes which are affecting the applicable BAT-AEL for a unit or other substantial and structural changes in the nature or functioning of the units concerned, or in case of their replacement, extension or the addition of combustion, FCC, or waste gas sulphur recovery units, the BAT-AEL defined in Table 19 needs to be adjusted accordingly.

Monitoring associated with BAT 58

BAT for monitoring emissions of SO_2 under an integrated emission management approach is as in BAT 4, complemented with the following:

- a monitoring plan including a description of the processes monitored, a list of the emission sources and source streams (products, waste gases) monitored for each process and a description of the methodology (calculations, measurements) used and the underlying assumptions and associated level of confidence;
- continuous monitoring of the flue-gas flow rates of the units concerned, either through direct measurement or by an equivalent method;
- a data management system for collecting, processing and reporting all monitoring data needed to determine the emissions from the sources covered by the integrated emission management technique.

GLOSSARY

1.20. Description of techniques for the prevention and control of emissions to air

1.20.1. Dust

Technique	Description
Electrostatic precipitator (ESP)	Electrostatic
	precipitators
	operate such
	that particles
	are charged
	and separated
	under the
	influence of
	an electrical
	field.
	Electrostatic
	precipitators
	are capable of
	operating
	under a wide
	range of
	conditions.
	Abatement
	efficiency
	may depend
	on the number

	of fields,
	residence time
	(size), catalyst
	properties and
	upstream
	particles
	removal
	devices.
	At FCC units,
	3-field ESPs
	and 4-field
	ESPs are
	commonly
	used.
	ESPs may be
	used on a dry
	mode or with
	ammonia
	injection to
	improve the
	particle
	collection.
	For the
	calcining of
	green coke,
	the ESP
	capture
	efficiency
	may be
	reduced due
	to the
	difficulty for
	coke particles
	to be
	electrically
	charged
Multistage cyclone separators	Cyclonic
inandombe of elone population	collection
	device or
	system
	installed
	following the
	two stages of
	cyclones.
	Generally
	known as a
	third stage
	separator,
	common
	configuration
	consists of a
	single vessel
	-

	containing
	many
	conventional
	cyclones or
	improved
	swirl-tube
	technology.
	For FCC,
	performance
	mainly
	depends on
	the particle
	concentration
	and size
	distribution of
	the catalyst
	fines
	downstream
	of the
	regenerator
	internal
	cyclones
	cyclones
Centrifugal washers	Centrifugal
	washers
	combine the
	cyclone
	principle and
	an intensive
	contact with
	water e.g.
	venturi
	washer
Third stage blowback filter	Reverse flow
	(blowback)
	ceramic or
	sintered metal
	filters where,
	after retention
	at the surface
	as a cake, the
	solids are
	dislodged by
	initiating a
	reverse flow.
	The dislodged
	solids are then
	purged from
	the filter
	system
	1

Technique	Description
Combustion modifications	
Staged combustion	 —Air staging — involves substoichiometric firing in a first step and the subsequent addition of the remaining air or oxygen into the furnace to complete combustion —Fuel staging — a low impulse primary flame is developed in the port neck; a secondary flame covers the root of the primary flame reducing its core temperature
Flue-gas recirculation	Reinjection of waste gas from the furnace into the flame to reduce the oxygen content and therefore the temperature of the flame. Special burners using the internal recirculation of combustion gases to cool the root of the flames and reduce the oxygen content in the hottest part of the flames
Use of low-NO _X burners (LNB)	The technique (including ultra-low- NO_X burners) is based on the principles of

		reducing peak flame temperatures, delaying but completing the combustion and increasing the heat transfer (increased emissivity of the flame). It may be associated with a modified design of the furnace combustion chamber. The design of ultra- low-NO _X burners (ULNB) includes combustion staging (air/fuel) and flue-gas recirculation. Dry low-NO _X burners (DLNB) are used for gas turbines
0	Optimisation of combustion	Based on permanent monitoring of appropriate combustion parameters (e.g. O_2 , CO content, fuel to air (or oxygen) ratio, unburnt components), the technique uses control technology for achieving the best combustion conditions
D	Diluent injection	Inert diluents, e.g. flue-gas, steam, water, nitrogen added to combustion equipment reduce the flame temperature and consequently the concentration of NO _X in the flue-gases
S	elective catalytic reduction (SCR)	The technique is based on the reduction of NO_X to nitrogen in a catalytic bed by reaction with ammonia (in general

	aqueous solution) at an optimum operating temperature of around 300-450 °C. One or two layers of catalyst may be applied. A higher NO _X reduction is achieved with the use of higher amounts of catalyst (two layers)
Selective non-catalytic reduction (SNCR)	The technique is based on the reduction of NO _X to nitrogen by reaction with ammonia or urea at a high temperature. The operating temperature window must be maintained between 900 °C and 1 050 °C for optimal reaction
Low temperature NO _X oxidation	The low temperature oxidation process injects ozone into a flue-gas stream at optimal temperatures below 150 °C, to oxidise insoluble NO and NO ₂ to highly soluble N ₂ O ₅ . The N ₂ O ₅ is removed in a wet scrubber by forming dilute nitric acid waste water that can be used in plant processes or neutralised for release and may need additional nitrogen removal

1.20.3. Sulphur oxides (SO_X)

Technique	Description
Treatment of refinery fuel gas (RFG)	Some refinery fuel gases may
	fuel gases may be sulphur-free

	at source (e.g.	
	from catalytic	1
	reforming and	l
	isomerisation	1
	processes) but	1
	most other	1
	processes	1
	produce	1
	sulphur-	1
	containing gases	1
	(e.g. off-gases	1
	from the	1
	visbreaker,	1
	hydrotreater or	I
	catalytic	1
	cracking units).	1
	These gas	1
	streams require	1
	an appropriate	1
	treatment for	1
	gas desulphurisation	l
	(e.g. by acid gas	1
	removal — see	1
	below — to	1
	remove H ₂ S)	1
	before being	I
	released to the	1
	refinery fuel gas	1
	system	I
Refinery fuel oil (RFO) desulphurisation by hydrotreatment	In addition to	l
	selection of	1
	low-sulphur	1
	crude, fuel	1
	desulphurisation	1
	is achieved by	1
	the	1
	hydrotreatment	1
	process (see	I
	below) where	I
	hydrogenation	1
	reactions take	1
	place and lead	1
	to a reduction in	1
	sulphur content	I
Use of gas to replace liquid fuel	Decrease the	I
obe of Sub to replace inquite fact	use of liquid	I
	refinery fuel	
	(generally	
	heavy fuel oil	1
	containing	1
	containing	1
		_

	sulphur,	
	nitrogen,	1
	metals, etc.) by	
	replacing it with	
	on-site	
	Liquefied	
	Petroleum Gas	
	(LPG) or	
	refinery fuel gas	
	(RFG) or by	
	externally	
	supplied	
	gaseous fuel	
	(e.g. natural	
	gas) with a low	
	level of sulphur	
	and other	
	undesirable	
	substances. At	
	the individual	
	combustion unit	
	level, under	
	multi-fuel	
	firing, a	
	minimum level	
	of liquid firing	
	is necessary to ensure flame	
	stability	
	stability	
Use of SO _x reducing catalysts additives	Use of a	
	substance (e.g.	
	metallic oxides	
	catalyst) that	
	transfers the	
	sulphur	
	associated with	
	coke from the	
	regenerator	
	back to the	
	reactor. It	
	operates most	1
	efficiently in	
	full combustion	1
	mode rather	1
	than in deep	
	partial-	
	combustion	1
	mode.	1
	NB: SO_X	
	reducing	1
	catalysts	
	additives might	

	have a detrimental effect on dust emissions by increasing catalyst losses due to attrition, and on NO_X emissions by participating in CO promotion, together with the oxidation of
Hydrotreatment	SO ₂ to SO ₃ Based on hydrogenation reactions, hydrotreatment
	aims mainly at producing low- sulphur fuels (e.g. 10 ppm gasoline and diesel) and
	optimising the process configuration (heavy residue conversion and middle distillate production). It
	reduces the sulphur, nitrogen and metal content of the feed. As
	hydrogen is required, sufficient production capacity is needed. As the
	technique transfer sulphur from the feed to hydrogen sulphide (H ₂ S)
	in the process gas, treatment capacity (e.g. amine and Claus units) is also a

	possible bottleneck
Acid gas removal e.g. by amine treating	Separation of acid gas (mainly hydrogen sulphide) from the fuel gases by dissolving it in a chemical solvent (absorption). The commonly used solvents are amines. This is generally the first step treatment needed before elemental sulphur can be recovered in the SRU
Sulphur recovery unit (SRU)	Specific unit that generally consists of a Claus process for sulphur removal of hydrogen sulphide (H ₂ S)- rich gas streams from amine treating units and sour water strippers. SRU is generally followed by a tail gas treatment unit (TGTU) for remaining H ₂ S removal
Tail gas treatment unit (TGTU)	A family of techniques, additional to the SRU in order to enhance the removal of sulphur

	compounds. They can be divided into four categories according to the principles applied: direct oxidation to sulphur continuation of the Claus reaction
	(sub- dewpoint conditions)
	$\begin{array}{c}\text{oxidation to} \\ \text{SO}_2 & \text{and} \\ \text{recovering} \\ \text{sulphur} \\ \text{from SO}_2 \end{array}$
	-reduction to H_2S and recovery of sulphur from this H_2S (e.g. amine process)
Wet scrubbing	In the wet scrubbing process, gaseous compounds are dissolved in a suitable liquid (water or alkaline solution). Simultaneous removal of solid and gaseous compounds may be achieved. Downstream of the wet scrubber, the flue-gases are saturated with water and a

separation of the droplets is required before discharging the flue-gases. The resulting liquid has to be treated by a waste water process and the insoluble matter is collected by sedimentation or filtration According to the type of scrubbing solution, it can be: non--a regenerative technique (e.g. sodium or magnesiumbased) —а regenerative technique (e.g. amine soda or solution) According to the contact method, the various techniques may require e.g.: -Venturi using the energy from inlet gas by spraying it with the liquid -packed

> towers, plate towers,

	spray
	chambers.
	Where scrubbers are
	mainly intended for SO _X
	removal, a suitable design
	is needed to also efficiently
	remove dust. The typical
	indicative SO _x removal
	efficiency is in
	the range 85-98
	%.
Non-regenerative scrubbing	Sodium or magnesium-
	based solution is used as alkaline
	reagent to
	absorb SO _X generally as
	sulphates.
	Techniques are
	based on e.g.:
	—wet
	limestone
	aqueous
	ammonia
	—seawater
	(see infra)
Seawater scrubbing	A specific type
	of non-
	regenerative scrubbing using
	the alkalinity of
	the seawater as
	solvent.
	Generally
	requires an upstream
	abatement of
	dust
Regenerative scrubbing	Use of specific
	Use of specific SO _X absorbing

reagent (e.g.
absorbing
solution) that
generally
enables the
recovery of
sulphur as a by-
product during a
regenerating
cycle where the
reagent is
reused

1.20.4. Combined techniques (SO_x, NO_x and dust)

Technique	Description
C C C C C C C C C C C C C C C C C C C	See Section 1.20.3
	Combined technique to remove SO_X , NO_X and dust where a first dust removal stage (ESP) takes place followed by some specific catalytic processes. The sulphur compounds are recovered as commercial- grade concentrated sulphuric acid, while NO_X is reduced to N_2 . Overall SO_X removal is in the range: 94- 96,6 %.
	the range: 87- 90 %

Technique	Description
Combustion operation control	The increase in CO emissions due to the application of combustion modifications (primary techniques) for the reduction of NO_X emissions can be limited by a careful control of the operational parameters
Catalysts with carbon monoxide (CO) oxidation promoters	Use of a substance which selectively promotes the oxidation of CO into CO ₂ (combustion)
Carbon monoxide (CO) boiler	Specific post- combustion device where CO present in the flue-gas is consumed downstream of the catalyst regenerator to recover the energy It is usually used only with partial- combustion FCC units

Vapour recovery

Volatile organic compounds emissions from loading and unloading operations of most volatile products, especially crude oil and lighter products, can be abated by various techniques e.g.:

Absorption: the vapour molecules dissolve in a suitable absorption liquid (e.g. glycols or mineral oil fractions such as kerosene or reformate). The loaded scrubbing solution is desorbed by reheating in a further step. The desorbed either must be gases condensed, further processed, and incinerated or re-absorbed in an appropriate stream (e.g. of the product being recovered)

Adsorption: the vapour are retained by molecules activate sites on the surface of adsorbent solid materials, e.g. activated carbon (AC) or zeolite. The adsorbent is periodically regenerated. The resulting desorbate is then absorbed in circulating а stream of the product being recovered in a downstream wash column. Residual gas from wash column is sent to further treatment

Membrane gas separation: the vapour molecules are processed through selective membranes separate the vapour/air to mixture into a hydrocarbonenriched phase (permeate), which subsequently is condensed or absorbed, and a hydrocarbon-depleted phase (retentate).

Two-stage
 refrigeration/condensation:
 by cooling of the vapour/gas

	 mixture the vapour molecules condense and are separated as a liquid. As the humidity leads to the icing-up of the heat exchanger, a two-stage condensation process providing for alternate operation is required. — Hybrid systems: combinations of available techniques <i>NB</i>Absorption and adsorption processes cannot notably reduce methane emissions.
	Destruction of VOCs can be achieved through e.g. thermal oxidation (incineration) or catalytic oxidation when recovery is not easily feasible. Safety requirements (e.g. flame arrestors) are needed to prevent explosion. Thermal oxidation occurs typically in single chamber, refractory-lined oxidisers equipped with gas burner and a stack. If gasoline is present, heat exchanger efficiency is limited and preheat temperatures are maintained below 180 °C to reduce ignition risk. Operating temperatures range from 760 °C to 870 °C and residence times are typically 1 second. When a specific incinerator is not available for this purpose, an existing furnace may be used to provide the required temperature and residence times. Catalytic oxidation requires a catalyst to accelerate the rate of oxidation by adsorbing the oxygen and the VOCs on its surface The catalyst enables the oxidation reaction to occur at lower temperature than required by thermal oxidation: typically ranging from 320 °C to 540 °C. A first preheating step (electrically or with gas) takes place to reach a temperature necessary to initiate the VOCs catalytic oxidation. An

oxidation step occurs when the air is passed through a bed of solid catalysts

LDAR (leak detection and repair) programme

An LDAR (leak detection and repair) programme is a structured approach to reduce fugitive VOC emissions by detection and subsequent repair or replacement of leaking components. Currently, sniffing (described by EN 15446) and optical gas imaging methods are available for the identification of the leaks.

Sniffing method: The first step is the detection using handheld VOC analysers measuring the concentration adjacent to the equipment (e.g. by using flame ionisation or photoionisation). The second step consists of bagging the component to carry out a direct measurement at the source of emission. This second step is sometimes replaced by mathematical correlation curves derived from statistical results obtained from a large previous of number measurements made on similar components.

Optical gas imaging methods: Optical imaging uses small lightweight hand-held cameras which enable the visualisation of gas leaks in real time, so that they appear as 'smoke' on a video recorder together with the normal image of the component concerned to easily and rapidly locate significant VOC leaks. Active systems produce an image with a backscattered infrared laser light reflected on the component and surroundings. Passive its systems are based on the

natural infrared radiation of the equipment and its surroundings

Full screening and quantification of site emissions can be undertaken with an appropriate combination of complementary methods, e.g. Solar occultation flux (SOF) or differential absorption lidar (DIAL) campaigns. These results can be used for trend evaluation in time, cross checking and updating/validation of the ongoing LDAR programme.

Solar occultation flux (SOF): The technique is based on the recording and spectrometric Fourier Transform analysis of a broadband infrared or ultraviolet/visible sunlight spectrum along given а geographical itinerary, crossing the wind direction and cutting through VOC plumes.

	Differential absorption LIDAR (DIAL): DIAL is a laser-based technique using differential adsorption LIDAR (light detection and ranging) which is the optical analogue of sonic radio wave-based RADAR. The technique relies on the back-scattering of laser beam pulses by atmospheric aerosols, and the analysis of spectral properties of the returned light collected with a telescope
High-integrity equipment	 High-integrity equipment includes e.g.: —valves with double packing seals —magnetically driven pumps/compressors/agitators —pumps/compressors/agitators fitted with mechanical seals

VOC diffuse emissions monitoring

instead of packing
-high-integrity gaskets (such
as spiral wound, ring joints)
for critical applications

1.20.7. Other techniques

Techniques to prove the reduces emission from Comb	
Techniques to prevent or reduce emissions from flaring	Correct plant
	design:
	includes
	sufficient flare
	gas recovery
	system
	capacity, the
	use of high-
	integrity relief
	valves and
	other measures
	to use flaring
	only as a
	safety system
	for other than
	normal
	operations
	(start-up,
	shutdown,
	emergency).
	Plant
	management:
	includes
	organisational
	and control
	measures to
	reduce flaring
	events by
	balancing
	RFG system,
	using
	advanced
	process
	control, etc.
	Flaring
	devices
	design:
	includes
	height.
	height, pressure,

assistance by steam, air or gas, type of flare tips, etc. It aims at enabling smokeless and reliable operations and ensuring an efficient combustion of excess gases when flaring from nonroutine operations. Monitoring and reporting: Continuous monitoring (measurements of gas flow and estimations of other parameters) of gas sent to flaring and associated parameters of combustion (e.g. flow gas mixture and heat content, ratio of assistance, velocity, purge gas flow rate, pollutant emissions). Reporting of flaring events makes it possible to use flaring ratio as a requirement

	included in the EMS and to prevent future events.
	Visual remote monitoring of the flare can also be carried
	out by using colour TV monitors during
	flare events
Choice of the catalyst promoter to avoid dioxins formation	During the regeneration of the reformer catalyst, organic chloride is generally needed for effective reforming catalyst performance (to re-establish the proper chloride balance in the catalyst and to assure the correct dispersion of the metals). The choice of the appropriate chlorinated compound will have an influence on the possibility of emissions of dioxins and furans
Solvent recovery for base oil production processes	The solvent
	recovery unit consists of a distillation step where the solvents are recovered from the oil stream

or an inert gas)
in a fractionator.
The solvents
used may be a
mixture (DiMe)
of 1,2-
dichloroethane
(DCE) and
dichloromethane
(DCM).
In wax-
processing units,
solvent recovery
(e.g. for DCE) is
carried out using
two systems:
one for the
deoiled wax and
another one for
the soft wax.
Both consist of
heat-integrated
flashdrums and
a vacuum
stripper. Streams
from the
dewaxed oil and
waxes product
are stripped for
removal of
traces of
solvents

1.21. Description of techniques for the prevention and control of emissions to water

1.21.1. Waste water pretreatment

Pretreatment of sour water streams before reuse or treatment	Send
	generated
	sour water
	(e.g. from
	distillation,
	cracking,
	coking units)
	to
	appropriate
	pretreatment
	(e.g. stripper
	unit)
Pretreatment of other waste water streams prior to treatment	To maintain
	treatment
	performance

appropriate
pretreatment
may be
required

1.21.2. Waste water treatment

	1
Removal of insoluble substances by recovering oil.	These techniques generally include:
	—API Separators (APIs)
	Corrugated Plate Interceptors (CPIs)
	Parallel Plate Interceptors (PPIs)
	—Tilted Plate Interceptors (TPIs)
	-Buffer and/or equalisation tanks
Removal of insoluble substances by recovering suspended solid and dispersed oil	These techniques generally include:
	—Dissolved Gas Flotation (DGF)
	—Induced Gas Flotation (IGF)
	—Sand Filtration
Removal of soluble substances including biological treatment and clarification	Biological treatment

	techniques may
	include:
	—Fixed bed
	systems
	—Suspended
	bed
	systems.
	One of the most
	commonly used
	suspended bed
	system in refineries
	WWTP is the
	activated sludge
	process. Fixed
	bed systems
	may include a
	biofilter or
	trickling filter
Additional treatment step	A specific
Additional treatment step	A specific waste water
Additional treatment step	waste water treatment
Additional treatment step	waste water treatment intended to
Additional treatment step	waste water treatment intended to complement the
Additional treatment step	waste water treatment intended to complement the previous
Additional treatment step	waste water treatment intended to complement the previous treatment steps
Additional treatment step	waste water treatment intended to complement the previous treatment steps e.g. for further
Additional treatment step	waste water treatment intended to complement the previous treatment steps e.g. for further reducing
Additional treatment step	waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or
Additional treatment step	waste water treatment intended to complement the previous treatment steps e.g. for further reducing
Additional treatment step	waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon
Additional treatment step	 waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon compounds. Generally used where specific
Additional treatment step	 waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon compounds. Generally used where specific local
Additional treatment step	 waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon compounds. Generally used where specific local requirements
Additional treatment step	 waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon compounds. Generally used where specific local requirements for water
Additional treatment step	 waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon compounds. Generally used where specific local requirements for water preservation
Additional treatment step	 waste water treatment intended to complement the previous treatment steps e.g. for further reducing nitrogen or carbon compounds. Generally used where specific local requirements for water

 $(^1)$ In case of applying BAT 58.

 $(^2)$ Continuous measurement of SO₂ emissions may be replaced by calculations based on measurements of the sulphur content of the fuel or the feed; where it can be demonstrated that this leads to an equivalent level of accuracy.

 $(^3)$ Regarding SO_X, only SO₂ is continuously measured, while SO₃ is only periodically measured (e.g. during calibration of the SO₂ monitoring system).

(⁴) Refers to the total rated thermal input of all combustion units connected to the stack where emissions occur.

 $(^{5})$ Or indirect monitoring of SO_X.

(⁶) Monitoring frequencies may be adapted if, after a period of one year, the data series clearly demonstrate a sufficient stability.

 $(^{7})$ SO₂ emissions measurements from SRU may be replaced by a continuous material balance or other relevant process parameter monitoring, provided appropriate measurements of SRU efficiency are based on periodic (e.g. once every 2 years) plant performance tests.

(⁸) Antimony (Sb) is monitored only in catalytic cracking units when Sb injection is used in the process (e.g. for metals passivation).

(⁹) With the exception of combustion units firing only gaseous fuels.

 $(^{10})$ N and S monitoring in fuel or feed may not be necessary when continuous emission measurements of NO_X and SO₂ are carried out at the stack.

 $(^{11})$ The higher end of the range is associated with higher inlet NO_X concentrations, higher NO_X reduction rates and the ageing of the catalyst.

 $(^{12})$ The lower end of the range is associated with the use of the SCR technique.

(¹³) Not all parameters and sampling frequencies are applicable to effluent from gas refining sites.

 $(^{14})$ Refers to a flow-proportional composite sample taken over a period of 24 hours or, provided that sufficient flow stability is demonstrated, a time-proportional sample.

(¹⁵) Moving from the current method to EN 9377-2 may require an adaptation period.

(¹⁶) Where on-site correlation is available, COD may be replaced by TOC. The correlation between COD and TOC should be elaborated on a case-by-case basis. TOC monitoring would be the preferred option because it does not rely on the use of very toxic compounds.

(¹⁷) Where total-nitrogen is the sum of total Kjeldahl nitrogen (TKN), nitrates and nitrites.

 $(^{18})$ When nitrification/denitrification is used, levels below 15 mg/l can be achieved.

 $(^{19})$ When antimony (Sb) injection is used for metal passivation, NO_X levels up to 700 mg/Nm³ may occur. The lower end of the range can be achieved by using the SCR technique.

(²⁰) Soot blowing in CO boiler and through the gas cooler is excluded.

 $(^{21})$ The lower end of the range can be achieved with a 4-field ESP.

 $(^{22})$ Where selection of low sulphur (e.g. < 0,5 % w/w) feed (or hydrotreatment) and/or scrubbing is applicable, for all combustion modes: the upper end of the BAT-AEL range is $\leq 600 \text{ mg/Nm}^3$.

(²³) May not be achievable when not operating the CO boiler at full load.

 $(^{24})$ The lower end of the range can be achieved with a 4-field ESP.

(²⁵) When an ESP is not applicable, values of up to 150 mg/Nm³ may occur.

(²⁶) BAT-AEL refers to combined emissions from the gas turbine and the supplementary firing recovery boiler, where present.

 $(^{27})$ For fuel with high H₂ content (i.e. above 10 %), the upper end of the range is 75 mg/Nm³.

(²⁸) For an existing unit using high air pre-heat (i.e. > 200 °C) or with H₂ content in the fuel gas higher than 50 %, the upper end of the BAT-AEL range is 200 mg/Nm³.

 $(^{29})$ For existing units < 100 MW firing fuel oil with a nitrogen content higher than 0,5 % (w/w) or with liquid firing > 50 % or using air preheating, values up to 450 mg/Nm³ may occur.

(³⁰) The lower end of the range can be achieved by using the SCR technique.

(³¹) The lower end of the range is achievable for units with the use of end-of-pipe techniques.

(³²) The upper end of the range refers to the use of a high percentage of oil burning and where only primary techniques are applicable.

 $(^{33})$ In the specific configuration of RFG treatment with a low scrubber operative pressure and with a refinery fuel gas with an H/C molar ratio above 5, the upper end of the BAT-AEL range can be as high as 45 mg/Nm³.

 $(^{34})$ Techniques ii and iii may not be generally applicable where tanks are dedicated to products that require heat for liquid handling (e.g. bitumen), and where no leak is likely because of solidification.

 $(^{35})$ A vapour destruction unit (e.g. by incineration) may be substituted for a vapour recovery unit, if vapour recovery is unsafe or technically impossible because of the volume of return vapour.

(³⁶) Hourly values in continuous operation expressed and measured according to European Parliament and Council Directive 94/63/EC (OJ L 365, 31.12.1994, p. 24).

(³⁷) Lower value achievable with two-stage hybrid systems. Upper value achievable with single-stage adsorption or membrane system.

(³⁸) Benzene monitoring may not be necessary where emissions of NMVOC are at the lower end of the range.

(³⁹) May not be applicable for stand-alone lubricant or bitumen refineries with a release of sulphur compounds of less than 1 t/d

 $(^{40})$ Sulphur recovery efficiency is calculated over the whole treatment chain (including SRU and TGTU) as the fraction of sulphur in the feed that is recovered in the sulphur stream routed to the collection pits.

When the applied technique does not include a recovery of sulphur (e.g. seawater scrubber), it refers to the sulphur removal efficiency, as the % of sulphur removed by the whole treatment chain.